UNIVERSIDADE FEDERAL DO PARANÁ - DEP. DE MATEMÁTICA

Avaliação de Álgrebra Linear Prof. Luiz Carlos Matioli

PROCEDIMENTOS - LEIA COM ATENÇÃO:

A prova é individual, sem consulta e não é permitido o uso de calculadoras.

O tempo de duração da prova é 90 minutos.

A interpretação das questões faz parte da avaliação.

Respostas sem as devidas justificativas não serão consideradas.

A nota máxima da prova é 10 pontos.

1. Considere
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$$
 e $b = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$.

- (i) Use o processo de Gram-Schmidt para obter uma base ortonormal para o espaço coluna da matriz A. (1.0)
- (ii) Fatore A em um produto QR, onde as colunas de Q formam um conjunto ortonormal de vetores e R é uma matriz triangular superior. (1.0)
- (iii) Resolva o problema de mínimos quadrados para Ax = b. (1.0)
- 2. Considere $A = \begin{pmatrix} 2 & -3 \\ 2 & -5 \end{pmatrix}$.
 - (i) Determine os autovalores de A. (1.0)
 - (ii) Determine os autoespaços associados aos autovalores encontrados no item (i) deste exercício. (1.0)
 - (iii) Encontre uma matriz X e uma matriz diagonal D tal que $A = XDX^{-1}$. (1.0)
 - (iv) Mostre que $A^3 = XD^3X^{-1}$. (0.5)
- 3. (i) Mostre que os autovalores de uma matriz triangular $A_{n\times n}$ são os elementos diagonais de A. (1.0)
 - (ii) Seja $A_{n\times n}$ uma matriz inversível e seja λ um autovalor não nulo de A. Mostre que $1/\lambda$ é um autovalor de A^{-1} . (NOTA: $Av=\lambda v$ e $AA^{-1}=I_{n\times n}$) (1.0)
 - (iii) Considere Aa matriz dada no exercício 2 anterior. Determine os autovalores de $A^{-1}. \quad (0.5)$
- 4. Considere o espaço vetorial C[-1,1] com produto interno $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)dx$ e norma $||f||=\sqrt{\langle f,f\rangle}$
 - (a) Mostre que 1 e x são ortogonais. (0.5)
 - (b) Determine ||1|| e ||x|| e verifique a validadade do Teorema de Pitágoras. (1.0)

BOA PROVA!